

4EACH S.R.O.
WWW.4EACH.CZ

VERSION 1.0

JANUARY 5, 2024

MQTT CONNECTOR
PROFESSIONAL

APPLICATION NOTE 03
Publish data to Microsoft Azure IoT Hub with the URcap v. 1.8.0

Copyright © 2024 4Each s.r.o.

1/5/2024 1

 APPLICATION NOTE #3
In this application note, we will go through the process of publishing robot data to the Microsoft Azure
IoT hub using the MQTT Connector Professional URCap extension. We will cover the setup on the Azure
side, importing the correct certificate and message sending from the robot user program.

In this tutorial, we will learn how to setup the Azure services and the robot for sending device-to-cloud
messages.

NOTE

All Azure resources used in this application note are not available anymore. Resources were created
temporarily only for the purpose of explaining this process.

CONTENTS
 Application note #3 .. 1

Setting up Azure resources ... 2

Resource group ... 2

Iot hub ... 3

Shared access policies ... 7

Device explorer ... 8

Robot installation .. 11

Robot program .. 12

Footnotes .. 13

Copyright © 2024 4Each s.r.o.

1/5/2024 2

SETTING UP AZURE RESOURCES

RESOURCE GROUP

First, you must have an Azure account and an active subscription. This process is out of the scope of
this document. Microsoft offers some Free subscription plans. You can learn more on this website:

https://azure.microsoft.com/en-us/free

When your subscription is ready, we strongly recommend creating the Resource group for better
resource management .

Int the https://portal.azure.com dashboard, please select the Resource groups option:

And create the resource group by the option Create:

You can define any name for the Resource group. While creating the Resource group you have to define
the Region. Please select the Region which is close to your application. Selection of the far region can
cause some issues due to higher response time during the communication.

https://azure.microsoft.com/en-us/free
https://portal.azure.com/

Copyright © 2024 4Each s.r.o.

1/5/2024 3

In our application note we will use the resource group with the name RGURDemo:

IOT HUB

In the resource group RGURDemo, please select the Create option:

The Microsoft will bring you to a Marketplace with a lot of components. Please use the search

function to locate the IoT Hub service and use the Create function.

Copyright © 2024 4Each s.r.o.

1/5/2024 4

During the IoT Hub creation, some parameters are important:

Please select the existing Subscription and the created Resource group.

When you define the IoT hub name, please note, the name must be globally unique. This name will
become the hostname in the azure-devices.net domain. For our needs we have defined the IoT Hub
name as IoTHubURDemo.

For this application note we’ve selected the Free tier of the IoT Hub. Please note, the Free tier

can’t be upgraded to the higher tier in the future, and it is allowed to have only one Free tier instance
of the IoT Hub in the subscription.

For the demonstration needs of this application note we have defined the public access to the

IoT Hub in the networking configuration:

http://azure-devices.net/

Copyright © 2024 4Each s.r.o.

1/5/2024 5

Please select the Shared access policy + RBAC permission model:

The Free tier IoT hub does not allow any Add-ons:

Copyright © 2024 4Each s.r.o.

1/5/2024 6

We are not going to use any pre-defined Tags for this demonstration:

On the last page, you can review the IoT Hub configuration and you can start the deployment process
by clicking the Create button:

Since the deployment is successfully finished, you can find your new IoT Hub IoTHubURDemo in the
resource group RGURDemo.

Copyright © 2024 4Each s.r.o.

1/5/2024 7

SHARED ACCESS POLICIES

Open your new IoT Hub IoTHubURDemo in the resource group RGURDemo and in the left blade find
Shared access policies in the Security settings section.

From the list of policies select the existing iothubowner policy. On the right blade, copy the

primary connection string to the clipboard and keep it for future use.

Copyright © 2024 4Each s.r.o.

1/5/2024 8

DEVICE EXPLORER

For the Device definition and monitoring we are going to use the Device explorer utility from the

Azure IoT SDK.

Please download the utility from the https://github.com/Azure/azure-iot-sdks/releases

 website. Point to the Azure IoT SDKs section and scroll down to the assets. The recent version of the
SetupDeviceExplorer.msi file should be available here.

The version of the utility from the time of this application note should be directly available from
https://github.com/Azure/azure-iot-sdks/releases/download/2016-11-17/SetupDeviceExplorer.msi

Insert the connection string of your IoT Hub to the Configuration tab of the Device explorer and
press Update:

https://github.com/Azure/azure-iot-sdks/releases
https://github.com/Azure/azure-iot-sdks/releases/download/2016-11-17/SetupDeviceExplorer.msi

Copyright © 2024 4Each s.r.o.

1/5/2024 9

Go to the Management Tab and create the device by pressing the Create button:

Create the device in the dialog. Define only the name of the device and keep default values in other
dialog fields. We are going to use the name URDemoDevice.

Since The device is created, it should be available in the list on the management Tab of the Device
Explorer.

Copyright © 2024 4Each s.r.o.

1/5/2024 10

Select the SAS Token… function for generating the token:

In the SASTokenForm, please, enter the TTL value for the device.

NOTE

Please don’t leave the TTL field on its default 0 value, it will cause the connectivity issues.

After choosing the Generate function, please copy the generated text (token) and keep it for future use.

Copyright © 2024 4Each s.r.o.

1/5/2024 11

ROBOT INSTALLATION

NOTE

As we are going to transfer complex string values to the robot, we recommend creating the simple
Installation and robot user program in the URSim environment and transfer it to the real robot. You can
download the Simulator (URSim) on the website https://www.universal-robots.com/download.

As a first step in the robot environment is to use the device name as an MQTT Client Id in the
installation Tab of the MQTT Connector URCap.

Please Select the User defined Client Id a enter the name of the device same as it is defined in the
Device explorer Utility. In our case we use the URDemoDevice.

The second step is importing the certificate set for the TLS Communication with MS Azure. Chose the
Import... option and select the Certificate file.

NOTE

• You can download the AllAzureCertificates.crt file from the Documentation section

of the product website https://4each.cz/mqtt-connector-professional.

Find the certificate file on the filesystem of the robot in the Import dialog.

https://www.universal-robots.com/download
https://4each.cz/mqtt-connector-professional

Copyright © 2024 4Each s.r.o.

1/5/2024 12

NOTE

• You can transfer files to the robot by using SFTP or SCP protocol (we usually use the WINSCP

utility for file transfers. Available on the https://winscp.net website).

• The location for user programs in the URSim environment is /home/ur/ursim-

current/Programs.UR10

• The location for user programs in the real robot is /programs

After the successful import, the certification file should be visible in the list.

ROBOT PROGRAM

The main program body is as following (note that robot program loops forever property is disabled)

https://winscp.net/

Copyright © 2024 4Each s.r.o.

1/5/2024 13

The following parameters are required to successfully initialize the connection:

• Host: The address of the host consists of the name of the IoT Hub and the azure-devices.net

domain. In our case the host is defined as IoTHubURDemo.azure-devices.net . The parameter is

type of string, so it is necessary to put the value in double qote (“”).

• Port: The port of the IoT Hub is 8883 (standard MQTT port for TLS connectivity)

• Username: The username should follow this pattern {iotHub-hostname}/{device-

id}/?api-version=2021-04-12, where{iotHub-hostname} is the full CName of the IoT

Hub. In our case the username should look like IoTHubURDemo.azure-

devices.net/URDemoDevice/?api-version=2021-04-12

• Password: Should be part of the SAS Token we’ve kept from the Device Explorer. The pattern

of the password is SharedAccessSignature sig={signature-

string}&se={expiry}&sr={URL-encoded-resourceURI}. Let’s consider the following

SAS token:
HostName=IoTHubURDemo.azure-

devices.net;DeviceId=URDemoDevice;SharedAccessSignature=SharedAc

cessSignature sr=IoTHubURDemo.azure-

devices.net%2Fdevices%2FURDemoDevice&sig=VW4%2Fxhd53JosF9SRyMZ3p

veDLIONAQQiDR%2Bt9FBGtLA%3D&se=1735549327

After removing the grey part, the rest of the SAS token should be used as a password.

All the parameters mentioned above are used in the standard MQTT Connector function
mqtt_initialize.

mqtt_connect_tls– opens network connection between robot and MQTT broker. Function takes one
string parameter with the name of the certificate file. In our case “AllAzureCertificates.crt”.

Afterwards, program jumps into the testing loop, which contains the mqtt_publish function.

The mqtt_publish function expects following parameters:

• Topic: The Topic parameter should fit the following pattern devices/{device-

id}/messages/events/ .

In our case the Topic parameter should look like
devices/URDemoDevice/messages/events/

• Payload: Some data to be sent to the MS Azue. In our case we are sending String “Hello Azure

No.” with the iterator number of the loop.

mqtt_disconnect - Disconnects from the broker cleanly. It is advised to use disconnect function to
clean up network resources and to let broker know, that client has disconnected voluntarily.

FOOTNOTES

• Program doesn’t check whether broker is connected or not. It tries to connect, and then loops

forever. However, if connection does become available in the future, it connects automatically,

i.e. it performs automatic reconnect.

• Return values from functions are stored in variables, but never used. They are set like this for

clarity and ease of debugging thanks to variables lookup table in Polyscope.

http://iothuburdemo.azure-devices.net/
http://iothuburdemo.azure-devices.net/URDemoDevice/?api-version=2021-04-12
http://iothuburdemo.azure-devices.net/URDemoDevice/?api-version=2021-04-12

